
ICS LAB A

Introduction
In this Lab, you'll need to implement a tiny LC3 assembler.

If you choose to use the framework we provide:

Your task is to replace all TO BE DONE with the correct code.

You'll need to learn how to use Makefile .
We recommend you to finish this Lab in Linux (vlab is a good option).

Otherwise, you can also write the assembler from scratch by yourself.

You may refer to chapter 7.3 The Assembly Process in the textbook for help.

Overview

You'll need to complete all TO BE DONE in assembler.h and assembler.cpp

Assignment
The correct code will get you 95% of the marks for this experiment.
Report accounts for the rest 5%.

You only need to hand in your report renamed PB21xxxxxx_姓名_labA.pdf .

（附加实验代码需要检查验收，具体方式：线下/线上待通知）

Makefile
In this lab, we compile our codes with the help of make .

type command

.

├── Makefile // the Makefile to be used for this lab

├── src

│ ├── assembler.cpp

│ ├── assembler.h

│ └── main.cpp

└── test

 ├── expected // expected outputs for testcases

 │ ├── test1.bin

 │ ├── test2.bin

 │ └── test3.bin

 └── testcases

 ├── test1.asm

 ├── test2.asm

 └── test3.asm

make

af://n0
af://n2
https://vlab.ustc.edu.cn/
af://n14
af://n17
af://n25

will do:

generate main.o and assembler.o from main.cpp and assembler.cpp

link main.o and assembler.o into assembler

assembler is the executable file of our assembler

type command

will remove assembler.o , main.o , and assembler

Part1: The first pass

Step1: Format every line

Before we process any line read from a .asm file, we need to do some pre-processing:

remove comments (comments starting with ;).

convert the line into uppercase.

replace all commas with whitespace (for splitting).

replace all "\t\n\r\f\v" with whitespace (so TAB and other control chars become whitespace).

remove the leading and trailing whitespaces.

implement Trim function first

To simplify the problem, we assume the operand of .STRINGZ only consists of uppercase English

letters or numbers.

You can improve the framework so that it supports .STRINGZ with any string operand, but

it's not required.

Complete FormatLine function in assembler.h in this step.

Step2: Store label

In the first pass of assembly, you need to store labels with their addresses in the Symbol Table.

Complete LineLabelSplit function in assembler.cpp in this step.

This function accepts a formatted line(in step1) and:

If the first word in the line is not an opcode, then treat it as a label. Store it with its
corresponding address in the Symbol Table. Return the line with the label removed.
Otherwise, simply return the line.

label_map is a member of the assembler class, you can store the label with its address by:

make clean

label_map.AddLabel(/* something here */)

af://n39
af://n40
af://n61

Step3: Complete the first pass

Complete firstPass function in assembler.cpp in this step.

You only need to modify current_address .

Part2: The second pass
In the second pass:

The function calls TranslatePseudo or TranslateCommand to convert the asm code into bin

format.

Complete these two functions in this part.

You may need to implement some helper functions in assembler.h first:

RecognizeNumberValue, NumberToAssemble, ConvertBin2Hex .

Test
Congratulations! Now you should have finished the tiny LC3 assembler!

int assembler::secondPass(std::string &output_filename) {

 // Scan #2:

 // Translate

 std::ofstream output_file;

 // Create the output file

 output_file.open(output_filename);

 if (!output_file) {

 // @ Error at output file

 return -20;

 }

 for (const auto &command : commands) {

 const unsigned address = std::get<0>(command);

 const std::string command_content = std::get<1>(command);

 const CommandType command_type = std::get<2>(command);

 auto command_stream = std::stringstream(command_content);

 if (command_type == CommandType::PSEUDO) {

 // Pseudo

 output_file << TranslatePseudo(command_stream) << std::endl;

 } else {

 // LC3 command

 output_file << TranslateCommand(command_stream, address)

 << std::endl;

 }

 }

 // Close the output file

 output_file.close();

 // OK flag

 return 0;

}

af://n72
af://n75
af://n82

Make sure you are in the root directory (which contains Makefile), then you can see the helper
information of the assembler by typing command:

The output should be:

To assemble an input.asm file into output.bin , type command (still in root directory):

We have provide you with the testcases in the test subdirectory. Your assembler must be able
to take in asm file in testcases folder, and output corresponding bin file in expected folder.

For example, you can do:

If the two files are identical, then diff will output nothing, which means your assembler works.

make # generate executable file

./assembler -h

This is a simple assembler for LC-3.

Usage

./assembler [OPTION] ... [FILE] ...

Options

-h : print out help information

-f : the path for the input file

-e : print out error information

-o : the path for the output file

-s : hex mode

./assembler -f input.asm -o output.bin

mkdir /test/actual

./assembler -f ./test/testcases/testcase1.asm -o ./test/actual/testcase1.bin

diff ./test/actual/testcase1.bin ./test/expected/testcase1.bin

	ICS LAB A
	Introduction
	Overview
	Assignment
	Makefile
	Part1: The first pass
	Step1: Format every line
	Step2: Store label
	Step3: Complete the first pass

	Part2: The second pass
	Test

