
ICS LAB S
Introduction
In this Lab, you'll need to implement a tiny LC3 simulator.

If you choose to use the framework we provide:

Your task is to replace all TO BE DONE with the correct code.(TODO are not required!)
You'll need to learn how to use Cmake .

We recommend you to finish this lab in Linux(vlab is a good option)

Otherwise, you can also write the simulator from scratch by yourself.

You may refer to Appendix A in the textbook for more details.

Overview

You'll need to complete all TO BE DONE in main.cpp、 memory.cpp and simulator.cpp . (TODO
are not required!)

Assignment
The correct code will get you 95% of the marks for this experiment.
Report accounts for the rest 5%.

You only need to hand in your report renamed PB21xxxxxx_Name_labS.pdf

CMake
In this lab, we compile our code with the help of CMake.

type command

.

├── CMakeLists.txt # CMakeLists to be used for this lab

├── include

│ ├── common.h

│ ├── memory.h

│ ├── register.h

│ └── simulator.h

└── src

 ├── main.cpp

 ├── memory.cpp

 ├── register.cpp

 └── simulator.cpp

mkdir build

cd build

cmake ..

make

af://n0
af://n2
https://vlab.ustc.edu.cn/
af://n14
af://n17
af://n24

will do：

create a new directory called build

navigate into that directory
run cmake on the parent directory to generate the build instructions
use the make command to build the project

lc3simulator is the executable file of our simulator.

Hint

memory.cpp

There are three functions you'll need to complete in memory.cpp

ReadMemoryFromFile will read from the file(*.bin) and store the content in memory .

GetContent and [] operator overloading functions will return the content of the
corresponding address in memory

simulator.cpp

In simulator.cpp , key functions you need to complete are listed here:

SignExtend : Extend the number to corresponding length(B). (You may need to learn a little

about c++ templates.)
UpdateCondRegister : Update the condition register according to the content of the given

register.
VM_XX : The execution of specific instructions. If you get puzzled, you can refer to VM_ADD、

VM_BR and VM_LD .Note that VM_RTI and VM_TRAP are not required. But if you have more
interest, You may finish TODO in VM_TRAP .

NextStep : Execution of single instruction. Call the corresponding function according to the

opcode.

main.cpp

In main.cpp , you only need to finish the code in while loop.(Actually, maybe only one line) But we

still recommend you to read the whole program to understand the running process of the
simulator.

Test
We assume you are in the build subdirectory (of root directory) and you have built the project

after using cmake .. and make .

You can see the helper information of the simulator by typing command

The output should be:

./lc3simulator -h

af://n39
af://n40
af://n47
af://n58
af://n60

To simulate an input.bin file and initialize all registers with register.txt , type command:

We have provided you with testcases in the test subdirectory(of root directory). The input bin

files are in testcases folder, the register initialization files are in register folder and the

corresponding output with debug information of every step is in expected folder. Besides, the
original asm files are in asm folder for your convenience.

For example, you can do:

and then compare your output to the expected output.

LC3 SIMULATOR

Options:

 -h [--help] Help screen

 -f [--file] arg (=input.txt) Input file

 -r [--register] arg (=register.txt) Register Status

 -s [--single] Single Step Mode

 -b [--begin] arg (=12288) Begin address (0x3000)

 -o [--output] arg Output file

 -d [--detail] Detailed Mode

./lc3simulator -f input.bin -r register.txt

./lc3simulator -f ../test/testcases/test1.bin -r ../test/register/register1.txt

-d

	ICS LAB S
	Introduction
	Overview
	Assignment
	CMake
	Hint
	memory.cpp
	simulator.cpp
	main.cpp

	Test

